Molecular dynamics simulations of stretched gold nanowires: the relative utility of different semiempirical potentials.

نویسندگان

  • Qing Pu
  • Yongsheng Leng
  • Leonidas Tsetseris
  • Harold S Park
  • Sokrates T Pantelides
  • Peter T Cummings
چکیده

The mechanical elongation of a finite gold nanowire has been studied by molecular dynamics simulations using different semiempirical potentials for transition metals. These potentials have been widely used to study the mechanical properties of finite metal clusters. Combining with density functional theory calculations along several atomic-configuration trajectories predicted by different semiempirical potentials, the authors conclude that the second-moment approximation of the tight-binding scheme (TB-SMA) potential is the most suitable one to describe the energetics of finite Au clusters. They find that for the selected geometries of Au wires studied in this work, the ductile elongation of Au nanowires along the [001] direction predicted by the TB-SMA potential is largely independent of temperature in the range of 0.01-298 K. The elongation leads to the formation of monatomic chains, as has been observed experimentally. The calculated force-versus-elongation curve is remarkably consistent with available experimental results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of temperature in the formation and growth of gold monoatomic chains: A molecular dynamics study

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. The effect of temperature on the formation and growth of monoatomic chains is investigated by extensive molecular d...

متن کامل

0 Metallic nanowires : multi - shelled or filled ?

The room temperature structure of aluminum, copper and gold infinite nanowires is studied. The molecular dynamics simulation method and the same type of the embedded atom potentials made by Voter and coworkers are used. It was found that multi-shelled and various filled metallic nanowires exist depending on the metal and the initial configuration. The results were compared with previous simulat...

متن کامل

Multishelled Gold Nanowires

The current miniaturization of electronic devices raises many questions about the properties of various materials at nanometre-scales. Recent molecular dynamics computer simulations have shown that small finite nanowires of gold exist as multishelled structures of lasting stability. These classical simulations are based on a well-tested embedded atom potential. Molecular dynamics simulation stu...

متن کامل

Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations

The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...

متن کامل

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 126 14  شماره 

صفحات  -

تاریخ انتشار 2007